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Abstract—Detecting dangerous driving has been of critical
interest for the past few years. However, a practical yet minimally
intrusive solution remains challenging as existing technologies
heavily rely on visual features or physical proximity. With this
motivation, we explore the feasibility of purely using mmWave
radars to detect dangerous driving behaviors. We first study char-
acteristics of dangerous driving and find some unique patterns
of range-doppler caused by 9 typical dangerous driving actions.
We then develop a novel Fused-CNN model to detect dangerous
driving instances from regular driving and classify 9 different
dangerous driving actions. Through extensive experiments with
5 volunteer drivers in real driving environments, we observe that
our system can distinguish dangerous driving actions with an
average accuracy of 97(+2)%. We also compare our models with
existing state-of-the-art baselines to establish their significance.

Index Terms—Dangerous Driving Behaviors, mmWave sensing

I. INTRODUCTION

World Health Organization (WHO) reports that an alarm-
ing 1.2 million people die every year globally due to road
accidents [1]; dangerous driving remains one of the major
causes (around 45% of the cases) of these accidents. Notably,
there have been significant technology-backed advancements
toward monitoring dangerous driving in real-time. With com-
mercial attempts such as Advance Driver Assistance Sys-
tems (ADAS) [2], and numerous research works [3], [4], the
domain is well-studied. For instance, recent times observe
a significant drift towards computer vision [5] and body-
mounted wearable-based [6] approaches for driving behavior
monitoring. However, vision-based approaches are challenged
by privacy concerns among individuals, particularly for the
public and shared vehicles. Further, the detection accuracy
depends on several factors [7] such as lighting conditions,
the orientation of the camera, etc. Similarly, wearable-based
approaches are difficult to generalize as the signatures from
a single age group do not necessarily align seamlessly with a
different age group [8]. Moreover, it is not easy to ensure a
driver always equips themselves with the required wearable
devices. At this point, we raise the following fundamental
question. How can we develop a system for monitoring dan-
gerous driving in a compact and pervasive manner, such that
the community can adopt it at large? At the same time, can
an alternative modality be leveraged effectively to address this
problem? We proceed with the notion of answering these.

Recently, we observed an imminent paradigm shift to-
wards 5G technology which builds on top of millimeter wave
(mmWave)-based communication [9]. As more and more de-
vices are introduced in this ecosystem, the mmWave hardware
gets integrated into a large variety of devices, making this
technology a pervasive platform. This observation metamor-
phose into a critical question: can we leverage the physics of
mmWave to capture the driver’s driving behaviors correspond-
ing to dangerous driving behavior? A mmWave radar [10] can
effectively measure parameters like distance, velocity, etc., of
an object. This idea has been exploited to solve diverse range
of problems, such as human activity recognition [11], gesture
recognition [12], vital sign detection [13] and even voice
reconstruction [14], which involve positioning and movement
estimations. Based on this information, in this work, we pro-
pose mmDrive , that uses a Frequency-modulated continuous-
wave (FMCW) mmWave radar to monitor dangerous driving
behaviors from a driver’s perspective. As soon as a case of
distracted driving is detected, mmDrive can be used to take
immediate action, such as warning the driver or notifying
nearby vehicles with appropriate messages.

Advantages over Existing Approaches: We also observe that
leveraging mmWave for monitoring dangerous driving has
several advantages over existing state-of-the-art approaches,
including the following. (i) An mmWave radar can monitor a
driver’s movements directly rather than indirect observations
such as vehicle states and its kinematics. (ii) Unlike cameras,
an mmWave radar has a minimal invasion of privacy as it
does not capture visual features of the environment. (iii)
mmWave radar measures passively, and does not restrict an
individual’s regular movements and activities. Unlike wear-
ables, mmWave sensing does not require a user to mount,
or carry any device. (iv) With an mmWave radar, micro-
movements such as yawning can also be detected [15], [16].
This could be crucial for determining a sleepy state of a
driver. (v) mmWave can penetrate potentially light-occluding
entities such as clothing [17], and therefore can be used even
with the driver wearing a face mask. However, beyond these
advantages, mmDrive must overcome a set of hurdles to be
practically usable.

Challenges: It is not straightforward when it comes to using
a mmWave radar to monitor the activities within a moving
vehicle; several challenges must be addressed for a func-



tionally effective system, as follows. Firstly, the environment
within a car is quite noisy. Many movements from the objects
inside a car, as well as the road and traffic conditions, can
directly impact the mmWave signals. Secondly A car can have
multiple passengers. However, only the movements specific
to the driver are the key to monitoring dangerous driving
scenarios; thus, only the drivers’ movements need to be
separated. Thirdly, signatures captured by the FMCW radar
from sudden jerks, such as in case of road bumps, potholes,
etc. have significant variation patterns and therefore need to
be eliminated as they do not bear relevant information.

Our Contributions: Owing to the above challenges, this paper
develops a pervasive system for non-intrusive live monitoring
of dangerous driver behaviors using mmWave sensing. In
contrast to the existing works [18] that use acoustic sonar
to detect only a few simple driving behaviors, we consider
9 different complex macro and micro-level activities that can
be potentially fatal during driving. The contributions of this
paper are as follows.

(1) Defining dangerous driving and identifying signatures
to detect them. We define rhree actions typically caused due
to fatigue/drowsiness of the driver (i.e., nodding, yawning,
steering anomaly), and six actions indicating driver distraction
(i.e., drinking/eating, turning back, picking up/drops, fething
forward, speaking on mobile, turning heads to talk to the
passengers). Altogether, these nine actions are potentially
dangerous and should be avoided while driving. We leverage
a single Commercial Off-The-Shelf (COTS) FMCW mmWave
radar. Through thorough pilot experiments, we analyze a set
of signal features, namely range doppler, range profile, and
noise profile for differentiating these activities from the regular
driving actions. We highlight the requirements of combining
spatial and temporal variations of these features to identify
dangerous driving behaviors.

(2) Development of an end-to-end pipeline for driving
behavior classification over noisy data. Through real-world
experiments, we observe that mmWave data is affected by
signal noises introduced from bad road conditions such as
bumps, potholes, etc. We leverage IMU sensor data to detect
and counter such road-induced noises. Further, we propose a
novel Fused-CNN classifier to detect dangerous versus normal
driving. Notably, mmDrive not only differentiates dangerous
driving from normal driving, but it also classifies the nine
different instances of dangerous driving behavior, as men-
tioned above. In order to reduce the computational overhead
and energy consumption, mmDrive classifies among the nine
potentially harmful driving actions only upon detecting an
instance of dangerous driving.

(3) Implementation and evaluation over on-the-field data.
We implemented our proposed Fused-CNN-based driver be-
havior model and compared it with a random forest and VGG-
16-based baseline. We further compare our system with an
acoustic modality-based approach [18] to demonstrate the su-
perior accuracy of mmWave-based sensing. To reproduce our
results, we open-source our implementation and a sample sub-
set of our dataset: https://github.com/arghasen10/mmdrive.git.

Through a thorough deployment of the device and field exper-
imentation, we collected 20 hours of driving data (mmWave,
IMU, and dashcam video for ground truth) from 5 users using
three vehicles — two sedans and one SUV.

To the best of our knowledge, mmDrive is the first of its
kind that can capture nine dangerous driving actions using
a mmWave radar. Moreover, it offers significantly higher
accuracy than the closest baseline using FMCW Sonar [18]
and is preferable over potentially privacy-invasive video-based
techniques simultaneously. Our experimental results show that
mmDrive achieves an average accuracy of 90(£0.5)% in clas-
sifying dangerous driving from regular driving and 97(+2)%
in detecting individual dangerous driving actions.

II. RELATED WORK

Existing literature on monitoring dangerous driving be-
haviors branches out in multiple directions. Here, we sum-
marize the most notable works in each of these directions.
Orientation and abnormality-based approaches: These older
approaches [19], [20] assess the orientation of the vehicle
defined by a set of parameters such as position, velocity,
acceleration, etc., and subsequently exploit them to indirectly
monitor dangerous driving. The assumption here is that the
abnormality in the driving behavior causes irregular patterns
in these parameters, eventually inferring dangerous driving.
However, several uncontrollable elements, such as weather,
traffic, etc., could also cause irregular driving patterns and not
necessarily signify dangerous driving.

Vision-based approaches: Vision-based approaches [21], [22]
leverage computer vision on RGB camera [23], thermal imag-
ing [24], and Infrared (IR) camera [25] to detect abnormal
driving activities by directly focusing on the driver. The
captured images within the environment are processed to
determine movements, including facial features such as eye
movements, talking, and yawning, as well as movements
of other body parts [26] such as head movements, hand
movements, etc. These activities, in turn, signify patterns of
inattentive or dangerous driving behaviors. However, such
vision-based approaches invade privacy [27], limiting their
adoption as a practical solution primarily for public vehicles.
Wearable-based approaches: Considering the pervasiveness
and effectiveness of wearable devices, researchers have lever-
aged them to sense body kinematics and other body-specific
signatures. Patterns in IMU (Inertial Measurement Unit) in-
formation, EEG (ElectroEncephaloGram) [28] signals, heart
rate, etc., bear various activity-specific signatures, and thus
are used to assess abnormal and dangerous driving behaviors
eventually. However, such signatures often vary between dif-
ferent demographics (e.g., age groups), making it difficult to
make such a system generic. Additionally, wearables must
be explicitly carried by the users and may have invasive
footprints (e.g., EEG sensor fitted on the body) interfering
with individuals’ day-to-day movements.

Acoustics-based approaches: Researchers have also explored
acoustics for studying distracted and dangerous driving scenar-
ios, which leverages doppler shifts [29], [30] as well as FMCW
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Fig. 1: Working principle of an FMCW Radar - (a) Radar
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chirps [18]. However, environmental noise has a significant
influence [31] over such acoustic-based sensing. Even with
pervasive devices such as smartphones being used for acoustic
sensing, it is worth noting that different devices have different
sensitivity patterns [32] for audio signals that impact the
effectiveness of such systems. Other factors, such as the impact
of location and orientation of the sensor, and even privacy
issues, are the cause of concern for acoustic sensing.

III. BACKGROUND AND OBSERVATIONS

This section first introduces the technical aspects of an
FMCW mmWave radar that are relevant to this work. After
that, we present our observations concerning dangerous driving
behaviors that can be mapped to these factors.

A. Preliminaries

A generic FMCW radar uses a linear ‘chirp’ (continuous

waves in the form of periodic signals) or swept frequency
transmission, which is reflected by the obstacles in the envi-
ronment. The radar then performs the dechirping by mixing
the transmitted signal with the reflected signal. The resulting
Intermediate frequency signal (IF) then undergoes a set of
processing to extract the needed information.
Estimating the position of an object With a transmitted chirp
(T'x) and the corresponding received chirp (Rx) and with a
transmission time 7, the distance d of the body from the
radar, which is causing the reflection, can be calculated as,

o C TC
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Here, f;, the beat frequency, is the frequency difference
between Tx and Rx chirps, ¢ is the speed of light, and
the fractional component, % represents the slope, S of the
FMCW chirp. A Range Fast Fourier Transform (Range-FFT)
is needed first on the IF signal to extract all the reflectors
(marked by frequency peaks). Eq. 1 is then used to measure the
distance of a reflector. Finally, the radar captures the received
power at different range bins and generates a one-dimensional
array signifying range profile.

Estimating the movements of an object: An FMCW radar
transmits N number of chirps in a continuous sequence,
each separated by a transmission time of 7. When a body
movement exists, the range-FFT corresponding to the chirps

will have peaks in the exact location but with a phase change.
Let v be the velocity at which the body moved, then the
measured phase difference between two successive Rx chirps
corresponding to a motion of v X T can be stated as,
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At this point, a second FFT, called Doppler-FFT, can be
performed on these N phases to assess the body’s movement.
The radar captures the range and velocity information in a 2D
matrix called a range-doppler heatmap.
Assessing the noise profile: Doppler information at different
range bins helps calculate the noise profile. The noise profile
is in the same format as range profile, but the profile is at the
maximum Doppler bin (maximum body movements).
mmDrive leverages range profile, range-Doppler heatmap
and the noise profile to capture signatures of driver activities.
For this, we perform a pilot study across different driver’s
behavior leveraging these factors.
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B. Pilot Study

To design mmDrive , the first question we come across is,
how to define the problem of irregular and dangerous driving
behavior? Following the definitions of dangerous driving ac-
tions from the literature [33], we extend it to accommodate
a broader range of fine-grained activities that are indicators
of dangerous driving. We primarily group these activities into
two basic categories: (1) actions caused by fatigue/drowsiness
and (2) actions caused by distraction.

Actions caused by drowsiness: This group of actions typically
occurs when the driver is fatigued or drowsy and could
potentially cause an accident.

o Nodding: When a driver is feeling drowsy or going to fall
asleep, he/she typically makes a fast periodic bowing motion
of the head in front and back direction (Fig. 2(a)).

e Yawning: A standard action when the driver is fatigued is
yawning. The two acts that make up a yawn include widely
opening the mouth for inspiration, lifting the head due to the
reactive force of expiration, and finally lowering the head
to its normal position. (Fig. 2(b))

o Anomaly in steering: A typical driver often turns the steering
wheel smoothly and uniformly, even on turns. However, a
drowsy driver could stop adjusting the steering wheel for
longer due to sleepiness. As the vehicle moves laterally, the
driver may need to move the wheel sharply to adjust, which
distinctively has movement patterns not observed during the
normal driving scenario (Fig. 2(c)).

Actions caused by distractions: Distracted driving typically

involves activities that signify a lack of focus on driving and

may result in dangerous situations. Here, we enlist a few such

activities which we aim to capture using mmDrive .

o Drinking or Eating: An event of eating or drinking while
driving might cause a minor forward tilt followed by picking
up some items. In a typical scenario, one hand is momen-
tarily taken off the wheel to grab the item and put it in the
mouth (Fig. 2(d)).



Fig. 2: Dangerous driving activities — (a) Nodding, (b) Yawn-
ing, (c) Steering anomaly, (d) Drinking, (e) Talking to the rear
passenger, (f) Picking a drop, (g) Fetching from the dash, (h)
Using mobile, (i) Talking sideways

o Turning back: A driver may turn around to talk to a rear
passenger, check on some items in the backseat, or care
for their children sitting behind. This, for obvious reasons,
takes away their focus from driving. The typical movements
observed were turning the head and twisting the upper part
of the body in some cases (Fig. 2(e)).

e Picking up drops: Another situation is when a driver gets
distracted when they intend to pick up a dropped item
from the car floor while driving. This usually involves
the movement of a hand and the upper part of the body
downwards (Fig. 2(f)).

o Fetching forward A driver may intend to fetch something
from the car dashboard while driving (Fig. 2(g)). The
movements involved typically include leaning forward along
with necessary hand movements.

o Using Mobile Phone: Using a mobile phone is a definite
cause of distraction. A driver may pick up a call, text, or
use an application by lifting the mobile phone (Fig. 2(h)).

o Talking to the front-passenger: The driver may intend to
speak with the adjacent passenger (Fig. 2(i)). The usual
movements involve turning the head and some mouth move-
ments as the driver speak.

Other miscellaneous movements: Apart from the movements
highlighted above, the environment within a vehicle can also
involve movements from elements such as road-bumps. Even
though these movements do not bear any information relevant
to dangerous driving, the patterns are significant enough to
confuse the classification model. Therefore, these movements
need to be identified and eliminated accordingly.

Notably, the highlighted movements involved in the above
cases are not transitory but last for a short while. We next dis-
cuss the observed signatures for the events mentioned above.
In each case, to capture the signatures, an AWR6843ISK !
mmWave FMCW radar is placed on the car dashboard in front
of the driver, as illustrated in Fig. 1(a).

1) Analysis of range-doppler heatmap: The range-doppler
information is in the form of a 2D image, where its abscissa

Thttps://www.ti.com/tool/AWR6843ISK (Accessed: September 22, 2023)

4
0
-4
-8

o ® © ¥
-

Nodding

Using Phone  Anomaly in Steering

Fig. 3: Range-doppler heatmaps for driving actions

is the range (marked by 32 indices of the 64 available, as
per the specifications of AWR6843ISK), the ordinate is the
Doppler speed, and the value contained is the magnitude of
power for the velocity across the different range and doppler
bins. The typical distance between the driver and mmWave
sensor in the deployed setup is around 0.6 to 0.8 meters,
corresponding to range bins from 6 to 16. Thus we observe
a higher power value within this range, as seen in Fig. 3.
For body movements such as fetching forward, picking drops,
nodding, turning back, etc., the driver moves their body in a
particular direction, stays in that orientation for a few seconds,
and then returns to normal position. For these types of actions,
we observe that when the driver starts the activity, the doppler
shifts up in the positive direction (or in the negative, depending
upon the direction of the movement). When the driver returns
to the normal state, the doppler shifts down (or up, depending
on the movement order) and finally returns to zero as the
activity ends. Thus, we observe a circular pattern in the range-
doppler heatmap for the given actions, as shown in Fig. 3. In
the event of a steering anomaly, the driver abruptly moves
the steering wheel, resulting in a sudden change in the range-
doppler heatmap across different range bins. However, a driver
usually makes fewer body movements for activities such as
yawning, drinking, or using a mobile phone while driving.
Thus the variation in the range-doppler shows lesser strength
in the magnitude of the power value.

2) Analysis of range-doppler, range profile, and noise pro-
file for different drivers: To understand the observed variations
in more detail, we show the distribution of the mean of the
range-doppler, the range profile, and the noise profile for
different driving actions for two different drivers in Fig. 4.
As can be seen from Fig. 4(a) and Fig. 4(b), yawning, using
a phone, talking to the person in left (adjacent seat) or
drinking shows lesser variation as the distribution is denser
in the interquartile range. However, for the rest of the driving
actions, we observe that the distribution is less dense towards
the median representing some macro body movements of the
driver. Fig. 4(c) shows the distribution of range profile across
different driving actions, where the variation is less significant
across activities. However, the location of the medians of the
range profile for the two users has a substantial gap due to
differences in the driver’s height, sitting stance, and position.
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Fig. 5: Variation in the IMU data and Radar measurements

3) Analysis of different movements over time: Next, we
study the impact of different movements and the corresponding
signatures over time. The signs of our interest also include
jerks caused by road bumps, which are captured by leveraging
an IMU sensor. During road bumps, the z-axis of the IMU’s
accelerometer shows a peak signifying the magnitude of the
movement caused. We plot the mean of range-doppler, noise
profile, and the mean of the IMU data for each second over
three minutes in Fig. 5. The figure shows that each activity has
its period and mean value. For example, yawning takes place
for a shorter duration and marks a low mean value (close to the
mean of normal driving) of range-doppler. The driver uses his
phone for a longer term, similar to normal driving behavior,
except for certain peaks where the driver is making major
body movements to pick up the phone or move his hand from
the steering. On the other hand, an anomaly in steering takes
place for a longer duration, with significant variation in the
mean compared to normal driving. From this, we can conclude
that each of these driving behaviors has its own signature in
the range-doppler or noise profile and has its own time to
completion. If we switch to the IMU information, there is no
significant variation while the driver performs these activities.
However, the IMU data shows a peak when there is a road
bump (at around 170th second in Fig. 5). This peak is also
observed in the mean of the range-doppler and noise profile
data. Therefore, road bumps can directly impact the mmWave
measurements.

These observations establish the fact that each of the driving
behaviors has its own spatial as well as temporal variation.
Therefore, for classifying the driving behaviors, we need to
consider both spatial and temporal variations in the feature

space. At the same time, the instances where road bumps are
involved should be handled adequately.
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Fig. 6: Distributions of normal driving with other dangerous
driving actions in two-dimensional feature space

4) Analysis of driving behavior distribution: Observing the
mean of range-doppler, range profile, and noise profile, one
can assess the feasibility of driving behavior classification. The
range-doppler heatmap is a 16 x 64 2D matrix representing
64 range bins and 16 doppler bins. On the other hand, the
range profile and the noise profile are in the form of a
1D array of size 64, representing 64 range bins. Therefore,
a total of (16 x 64) + (64 x 2) = 1152 dimensions are
involved. We use a T-distributed neighbor embedding (t-SNE)
based dimensionality reduction technique to lower the higher
dimension (1152) space to a 2D space to visualize how each
dangerous driving action is separated from the normal driving
behavior. From the resultant Fig. 6, we observe that dangerous
driving actions are somewhat separable from normal driving
behavior. Nevertheless, no significant difference can be ob-
served in the case of activity pairs such as normal driving and
using the phone, normal driving and talking to the passenger,
etc. Interestingly, it is worth noting that road bumps or any
arbitrary sudden movements of the driver can also lead to
variation in the range-doppler or noise profile.

The key takeaways from this analysis can be summarized
as follows. (1) Range-doppler, noise profile, and range profile
show unique patterns across different driving actions and
drivers. (2) Each driving action has its unique signature at
completion time. (3) Features of dangerous driving actions



having micro-body movements show close signatures to nor-
mal driving behavior. (4) In real driving, road bumps can also
lead to variation in the feature space and thus can confuse
the model. Building on these takeaways, we next design
mmDrive for classifying different driving behaviors.

IV. METHODOLOGY

A broad overview of the processing steps involved in the
formulation of mmDrive is shown in Fig. 7. An FMCW radar
yields measurements corresponding to the driver’s body move-
ments. In contrast, an IMU sensor captures vehicle-specific
mobility patterns. This information is fed to mmDrive for fur-
ther processing. We describe the subsequent steps as follows.
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A. Pre-processing

As discussed in Sec. III, primary features involved in
sensing driving behaviors include range-profile, noise-profile,
and range-doppler heatmap. Notably, individual driving ac-
tions are not a single instantaneous activity; instead, they
occur for a while and have a unique temporal pattern in the
associated features. In order to capture this temporal variation,
we concatenate 10 feature frames together, determined based
on empirical analysis as discussed in Sec. V-D. Finally, we
apply a min-max scaler to normalize the features from O to 1.

B. Removal of Road-induced Noise

As observed in Sec. III, poor road conditions (i.e., broken
roads, speed bumps, etc.) can directly impact the noise profile
and range-doppler heatmap. This variation in the feature space
is similar to the impact due to the driver’s driving actions, thus
introducing ambiguity if not appropriately handled. In order
to detect such unwanted variations, we take the help of an
alternate modality from IMU sensors embedded within the
device. Following the existing works [29], [34], we use the z-
axis acceleration of the vehicle to determine jerkiness due to
poor road conditions or bumps. Subsequently, mmDrive filters
the corresponding data collected from the mmWave sensor to
suppress unwanted noise in the feature space.

C. Classification Pipeline

Unlike works based on traditional Convolutional Neural
Networks (CNN) and range-doppler spectrogram [35]-[37],
we take advantage of range-doppler as well as range profile
and noise profile features for classifying normal and dangerous
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driving behaviors. We propose a novel Fused-CNN architec-
ture as shown in Fig. 8; the model details follow.

1) Feature Extraction (FE) Network: The range profile
provides maximum power value at zero-doppler regions. On
the other hand, the noise profile provides noise floor power
at non-zero Doppler regions. Thus concatenating such infor-
mation helps in understanding the spatial dynamics of the
driver across the overall range bins. We concatenated 10
feature frames, as discussed earlier, to capture the temporal
variations. Hence, range and noise profiles are vectors of size
64 x 1 x 10, and concatenating them together forms an array of
size 64 x 2x 10. On the other hand, the range-doppler heatmap
forms a stacked 2D image-like feature with size 16 x 64 x 10.

We use three Convolutional 2D layers with valid padding
and ReLU activation, followed by a global average pooling
to extract 96 dimensional range-noise-based embeddings. Like
range-noise feature extraction, we apply convolution 2D opera-
tion to extract the dependency of neighboring values within all
possible k x k regions at each range-doppler frame along with
the temporal relationship of past 10 such frames. Further, it
computes several cross-channel feature maps, which are help-
ful for subsequent model layers. We use four 2D Convolutional
layers with the same padding and ReLU activation, followed
by a global averaging to extract 128 dimensional range-doppler
feature embeddings. Next, the concatenated range-noise and
range-doppler feature embeddings are forwarded through two
successive modules of the proposed architecture.

2) Dangerous Driving Behaviors (DDB) Classifier: The
DDB classifier takes the cross-channel feature embeddings
from the FE Network and passes through two successive
Dropout and Dense layers, where the dropout rate is kept as
10% to prevent overfitting. The last layer has 9 neurons with
softmax activation to output a joint probability distribution
over the nine dangerous driving actions. Note that the FE
Network is trained only with the backward gradients from
the DDB Classifier to learn efficient feature extraction for



classifying 9 dangerous driving behavior.

3) Dangerous Vs Normal driving (DVN) Classifier: The
DVN Classifier utilizes the learned feature embeddings from
the pre-trained FE Network to classify all forms of dangerous
driving behaviors from normal driving. The weights learned
in the FE Network during the training of the DDB Classifier
are unaltered due to backward gradient stopping beyond DVN
Classifier. Such an approach helps optimize the net training
time and keeps the model lightweight and feasible for real-
time deployment.

4) Lazy Inferencing: During real-world deployment, the
DVN Classifier determines whether the driving behavior is
normal or dangerous. Upon detecting normal driving behavior,
mmDrive differs the execution of the DDB Classifier, reducing
computational overhead and energy consumption. The DDB
Classifier is queried only if the DVN Classifier detects po-
tential dangerous driving behavior, further determining the
particular dangerous driving class.

V. IMPLEMENTATION AND EVALUATION

We deploy the experimental setup in real driving scenar-
ios to study the practical implications of dangerous driving
behaviors. The experiment is carried out across 3 cars and 5
drivers. The radar is placed on the dashboard of the car. On
average, the distance between the driver and the radar is around
0.7 meter. After thorough data collection and careful ground
truth annotation, we evaluate our proposed Fused-CNN model
against two state-of-the-art baselines. The detail follows.

A. Hardware Setup

mmDrive is implemented on COTS mmWave radar
AWR6843ISK, an FMCW-based mmWave radar from Texas
Instruments. The radar works in the frequency range of 60-
64GHz with a range resolution of approximately 4cm, which
is adequate for measuring the activities of interest listed in
Sec. III-B. The radar’s maximum range is up to a distance
of 10 meters with a Field-of-View of —70° to +70° on
azimuthal and elevation planes. This Field-of-View is suitable
for detecting dangerous driving behaviors within the car.
mmDrive measures variations across 64 range bins, which
represent 2.4 meters distance from the dashboard. This brings
a range resolution of 3.75 cm. mmDrive collects the doppler
information across 16 doppler bins from the 2D-FFT to have
a velocity resolution of 0.13 m/s which is sufficient to capture
the driver’s micro as well as macro body movements in real-
world driving scenarios. TABLE I shows various configuration
parameter of the mmWave radar. Moreover, we have used
Raspberry Pi 4 Model-B with 8GB RAM for live driving
behavior detection. The mmWave radar and IMU sensor are
connected to the Pi-4 via USB and I2C bus, respectively. The
IMU sensor filters out the road-induced noises as discussed in
Sec. IV-B. The mmWave serial data is parsed and forwarded
to the classification pipeline for inferring the driving behavior.

In order to collect the ground truth of the driving actions,
we have used Nexar Pro Smart Dash Camera®. The collected

Zhttps://www.getnexar.com/global/the-dash-cams

TABLE I: Radar Configuration

Parameters Value

Start Frequency (GHz) 60

Range Resolution (m) 0.0375
Maximum Unambiguous Range (m) 2.41
Maximum Radial Velocity (m/s) 1

Radial Velocity Resolution (m/s) 0.13
Frames per Second 5

Number of chirps per frame 64
Baud-rate 921600 bps

Fetching

Anomaly
in steering

Nexar Pro Smart
Dash Cam with IMU Nodding o
| AWR6843ISK rining
= L N Ppicking .
E drops
3 73%

Using
Phone 9.5% Talking
left

Turning
back

Yawning

Setup for
Acoustic Sensing

(b)

Fig. 9: (a) Hardware setup (b) Collected data distribution over
different dangerous driving behaviors

videos from the Nexar are used to annotate the mmWave
Radar-generated features. Fig. 9(a) depicts the hardware setup
used for field experimentation. We provide more details on the
data collection strategy in the subsequent subsection.

B. Data Collection

To collect raw mmWave features with the hardware men-
tioned above, we have used mmWave-Demo-Visualizer 3 and
modified the source code to enable raw data collection with
users input. Data collection is carried out for 5 users for
a total duration of 20 hours (4 hours for each user), using
three different vehicles, of which two were sedans, and one
was an SUV. Among the drivers, one was female, and the
rest were male, with ages ranging from 27 to 45. The least
experienced driver has one year of driving experience, while
the most experienced driver has more than ten years of driving
experience. Collected data contains mmWave radar data (i.e.,
range-profile, noise-profile, and range-doppler heatmap) along
with IMU, GPS, video, and audio of the roadside, as well as
the interior view of the car’s cabin collected using Nexar. We
took help from three volunteers to annotate dangerous driving
behaviors from the videos captured by the interior car camera.

C. Software Setup and Baselines

We have wused Python 3.9.6, Tensorflow
v2.10.0,and Scikit-learn v1l.1.2 for implementing
the Fused-CNN-based driver behavior classifier model
alongside other two state-of-the-art baselines: Random Forest
(RF), and VGG-16 [38]. The models are trained on an iMac

3https://dev.ti.com/gallery/view/mmwave/mmWave_Demo_Visualizer/
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(with 16GB primary memory running MacOS v12.6 with
base-kernel version: 21.6.0) and for the hyper-parameter
tuning we utilized a Workstation (48 x vCPU, GPU Nvidia
TitanX 12GB, & RAM 128GB).

The RF model’s features are engineered to take min, max,
mean and standard deviation of the range profile, noise profile
and range-doppler within a kernel size of 16 x 1, 16 x 1
and 16 x 16 for the total 10 frames with an array size of

64 x 1, 64 x 1 and 16 x 64 respectively, resulting (E?‘éig +

(?gﬁ) E}gi?g)) X 4 x 10 = 480 features. We have taken the
ﬁandom Search Cross Validation approach [39] to search for
the best hyperparameters for the RF classifier within a wide
range of values for each hyperparameter, performing K-Fold
cross-validation with each combination of the hyperparameter
values. Based on that, we have selected 400 estimators.

On the other hand, we have used VGG-16 [38] network
as another baseline. This network is initialized with the pre-
trained weights on the ImageNet [40] dataset to have a transfer
learning approach helping in learning feature extraction from
high dimensional image-like input data. On top of this base
VGG-16 model, we have added global average pooling and
successive Dropout and Dense layers in the Fused-CNN ar-
chitecture to classify dangerous driving behaviors. The models
are trained with a train-test split of 70%-30% and a validation
split of 20% from the training set.

Besides these two baselines, we use FMCW based-acoustic
modality as our third baseline. Previous works such as [18],
[30], [41] use an acoustic sensing approach to detect dangerous
driving behaviors with fewer behavior classes. To understand
the feasibility of this approach with nine different dangerous
driving behaviors, we implement acoustic-FMCW using the
smartphone-embedded microphone and speaker in the near-
ultrasound range between 16-19kHz. We transmit and receive
raw chirps using the smartphone and then apply Range-
FFT in the post-processing to generate the amplitude and
phase of the IF signal across different range bins. We further
apply 2D-doppler FFT to generate the range-doppler heatmap.
Finally, using a Random Forest-based classifier, we compare
its performance with mmDrive .

D. Results

We first discuss the impact of concatenating (stacking) the
temporal feature frames measured from the mmWave radar on
the detection accuracy and then discuss the detailed results
based on the optimal frame stacking.

1) Impact of Frame Stacking on FI-Score: As shown in
Fig. 10(a), the time taken for each driving action is heavily
skewed, and its median lies at around 16 feature frames
measured from the mmWave radar. Thus, driving actions
have a temporal impact on the mmWave radar measurements.
We stack multiple frames in order to capture this temporal
impact. To determine the optimal frame stacking for detecting
dangerous driving actions, we vary the number of frames
from 1 to 16 as shown in Fig. 10(b). The figure shows that
frame stacking has a direct impact on the overall performance
of the classification pipeline. We observe that on increasing
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Fig. 10: (a) Distribution of Frames required to complete
individual driving actions, (b) Variation in the weighted F1-
Score with number of stacked frames

the number of frames, some activities that take longer to
complete show a better F1-Score. For example, using a phone
or anomaly in the steering takes a longer duration; thus, more
frame stacking helps achieve better performance. However,
for behaviors with shorter duration (i.e., fetching forward or
nodding), F1-Score starts dropping. From Fig. 10(b), we see
that mmDrive achieves highest overall F1-Score for stacking
10 frames (activity time window of 2 seconds). Accordingly,
we utilize 10 stacked frames throughout this paper.

2) Performance of DDB Classifier: We compare the perfor-
mance of the proposed Fused-CNN model with two baselines
— (i) Random Forest (RF) and (ii)) VGG-16. In Fig. 11, we
report the confusion matrix for all the three classifiers. From
the confusion matrix, it is evident that our proposed Fused-
CNN model shows superior accuracy when compared with the
baselines. Fig. 12(a) shows the average weighted F1-Score
for all the individual dangerous driving actions. Among the
baselines, RF performs better in comparison to VGG-16. The
primary reason behind poor performance with VGG-16 is
that this model expects a 2D input feature, which is a 2D
range-doppler heatmap image in this case. Thus, it cannot
take advantage of range or noise profile-based features. Also,
VGG-16 is pre-trained with the imagenet dataset and does
not fit well in engineering features from a 2D range-doppler
heatmap, which is mostly sparse across the range bins except
for the range bin where the driver is present. In the case of
RF, the features are passed across different kernel sizes to
capture the spatial variation in the range and noise profiles
as well as in the range-doppler heatmap. Thus we observe a
slightly better performance in comparison to VGG-16. On the
other hand, the proposed Fused-CNN has complete freedom
in learning the spatio-temporal cross-features, as the features
are not hand-engineered like RF (min, max, mean, standard
deviation). Moreover, Fused-CNN shows a lower inference
time due to less number of convolutional layers as compared
to VGG-16.

3) Performance of DVN Classifier: In Fig. 12(b), we report
the ROC curve for the DVN classifier. As shown in the
figure, the area under the curve (AUC) is 0.96, which ensures
good accuracy in classifying dangerous driving from normal
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Fig. 12: (a) Weighted F1-Score across driving behaviors, (b)
AUC-ROC for classifying dangerous vs normal driving.

TABLE II: Driver-wise weighted F1-Score

Driving Behavior Driver-1  Driver-2  Driver-3  Driver-4  Driver-5
Drinking 0.90 0.96 0.80 0.88 0.92
Fetching forward 0.94 0.86 091 0.94 0.87
Anomaly in steering 0.96 0.91 0.98 0.91 0.93
Nodding 0.95 0.89 0.97 0.95 0.95
Yawning 0.96 0.86 0.81 0.87 0.88
Picking drops 0.96 0.85 0.87 0.82 0.84
Using phone 091 0.95 0.93 0.92 0.93
Turning back 0.91 0.95 0.92 0.94 0.91
Talking left 0.90 0.86 0.89 0.92 0.93
Overall 0.93 0.90 0.89 0.91 0.92

driving behavior. Moreover, we observe a weighted F1-Score
of 90(+0.5)%.

4) Driver Demographics: Next, we evaluate the Fused-
CNN model on a personalized scale across all five drivers.
In Table II, we report the action-wise F1-Score of the model.
We see consistently good performance across all five drivers,
achieving an overall weighted F1-Score of 91(+1)%. It is
worth noting that specific activities are harder to detect for
some drivers due to their height, sitting stances, and sitting
positions. Moreover, driving behaviors vary from one driver
to another. Despite the driver-specific variations, mmDrive
generalizes well and shows significant performance across all
drivers.

5) Performance of acoustic-FMCW: In Fig. 11(d), we show
the confusion matrix of classifying the nine dangerous driving
behaviors using acoustic-FMCW [18]. For the given classifi-
cation, it achieves an accuracy of 36%, failing miserably as
it starts confusing each of the dangerous driving behaviors.
For example, fetching forward is misclassified as picking/drops
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and nodding due to the similar body movement of the driver.
Moreover, for dangerous and normal driving classification, the
acoustic-FMCW approach shows an F1-Score of 60% and
73%, respectively. Thus existing acoustic-based approaches
may perform moderately on small-scale behavior classes but
remain infeasible for nine different driving behaviors.

6) Resource and Energy Consumption: Finally, in Fig. 13,
we report the power consumption footprints as well as the
CPU and memory utilization of Fused-CNN of mmDrive
with the baselines. As shown in Fig. 13(a), we observe that
both Fused-CNN and RF show higher power consumption
compared to VGG-16. Due to less computational overhead,
RF and Fused-CNN maintain a better utilization of CPU and
memory resources, showing lower latency for real-time infer-
ence. The peaks in Fig. 13(a) represent starting of an inference.
However, a higher latency for VGG-16 compared to Fused-
CNN and RF-based classifiers indicate that it is unsuitable
for live deployment. We further observe the memory usage of
all classifiers and find that Fused-CNN consumes an almost
similar amount of resources in terms of CPU or memory to
RF while having significantly higher accuracy.

VI. CONCLUSION

With the increasing demand for on-road safety, dangerous
driving and lack of attention while driving continue to be
a subject that needs significant attention. For decades, this
problem has encouraged researchers to explore solutions that
are efficient, pervasive, and, more importantly, timely. In this
paper, we demonstrate how carefully selecting features from
the measurements of a single COTS mmWave FMCW radar
could be the most prominent all-around solution to solve



this problem. Our advanced solution called mmDrive is not
just compact, pervasive, completely on-device, and privacy-
preserving but also demonstrates an accuracy of > 95% while
detecting a critical set of driver activities that could potentially
signify dangerous driving scenarios. We also thoroughly eval-
uate mmDrive in several real-world environments and compare
its performance with notable baselines. With the encouraging
observations of the outcome, we firmly believe mmDrive could
play a crucial role in saving lives and contributing to on-road
safety under diverse scenarios.
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